Search results

1 – 10 of 784
Article
Publication date: 23 June 2020

S. Sarkar, R.N. Jana and S. Das

The purpose of this article is to analyze the heat and mass transfer with entropy generation during magnetohydrodynamics (MHD) flow of non-Newtonian Sisko nanofluid over a…

Abstract

Purpose

The purpose of this article is to analyze the heat and mass transfer with entropy generation during magnetohydrodynamics (MHD) flow of non-Newtonian Sisko nanofluid over a linearly stretching cylinder under the influence of velocity slip, chemical reaction and thermal radiation. The Brownian motion, thermophoresis and activation energy are assimilated in this nanofluid model. Convective boundary conditions on heat and mass transfer are considered. The physical model may have diverse applications in several areas of technology underlying thermohydrodynamics including supercritical fluid extraction, refrigeration, ink-jet printing and so on.

Design/methodology/approach

The dimensional governing equations are nondimensionalized by using appropriate similarity variables. The resulting boundary value problem is converted into initial value problem using the method of superposition and numerically computed by employing well-known fourth-order Runge–Kutta–Fehlberg approach along with shooting technique (RKF4SM). The quantitative impacts of emerging physical parameters on the velocity, temperature, concentration, skin friction coefficient, Nusselt number, Sherwood number, entropy generation rate and Bejan number are presented graphically and in tabular form, and the salient features are comprehensively discussed.

Findings

From graphical outcomes, it is concluded that the slip parameters greatly influence the flow characteristics. Fluid temperature is elevated with rising radiation parameter and thermal Biot number. Nanoparticle concentration is reported in decreasing form with activation energy parameter. Entropy is found to be an increasing function of magnetic field, Brownian motion and material parameters. The entropy is less generated for shear-thinning fluid compared to shear-thickening as well as Newtonian fluids in the system.

Originality/value

Till now no study has been documented to explore the impact of binary chemical reaction with Arrhenius activation energy on entropy generation in an MHD boundary layer flow of non-Newtonian Sisko nanofluid over a linear stretching cylinder with velocity slip and convective boundary conditions.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 27 June 2020

N. Mahato, S.M. Banerjee, R.N. Jana and S. Das

The article focuses on the magnetohydrodynamic (MHD) convective flow of MoS2-SiO2 /ethylene glycol (EG) hybrid nanofluid. The effectiveness of Hall current, periodically heating…

Abstract

Purpose

The article focuses on the magnetohydrodynamic (MHD) convective flow of MoS2-SiO2 /ethylene glycol (EG) hybrid nanofluid. The effectiveness of Hall current, periodically heating wall and shape factor of nanoparticles on the magnetized flow of hybrid nanocomposite molybdenum disulfide- silicon dioxide (MoS2-SiO2) suspended in ethylene glycol (EG) in a vertical rotating channel under the influence of strong magnetic dipole (Hall effect) and thermal radiation is assessed. One of the channel walls has an oscillatory temperature gradient. Four different shapes (i.e. brick, cylinder, platelet and blade) of nanoparticles disseminated in base fluid (EG) are considered for simulation of the flow.

Design/methodology/approach

The analytical solution of governing equations has been presented. Influences of emerging physical parameters on the velocity and temperature profiles, the shear stresses and the rate of heat transfer are pointed out and discussed via graphs and tables.

Findings

The analysis revealed that Hall parameter has suppressing behavior on the velocity profiles within the rotating channel. The impact of nanoparticle shape factor advances the temperature characteristics significantly in the rotating channel. Brick-shape nanoparticles put up relatively low-temperature distribution in the rotating channel. The Hall parameter reduces the amplitudes of the shear stresses at the channel wall. However, the radiation parameter enhances the amplitude of the rate of heat transfer at the channel wall.

Social implications

The important technical advantage of hybrid composition of nanoparticles as a drug carrier is its stability, high thermal conductivity, high load carrying capacity, etc. The proposed model may be beneficial in biomedical engineering, automobile parts, mineral and cleaning oils manufacturing, rubber and plastic industries.

Originality/value

To the best of our knowledge, there is little or no report on the aspects of assessment of the effectiveness of Hall current and nanoparticle shape factor on an MHD flow and heat transfer of an electrically conducting MoS2-SiO2/EG ethylene glycol-based hybrid nanofluid confined in a vertical channel with periodically varying wall temperature subject to a rotating frame. The present work furnishes a robust benchmark for the dynamics of nanofluids.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 29 June 2020

Asgar Ali, R.N. Jana and S. Das

This paper aims to assess the effectiveness of Hall currents and power-law slip condition on the hydromagnetic convective flow of an electrically conducting power-law fluid over…

Abstract

Purpose

This paper aims to assess the effectiveness of Hall currents and power-law slip condition on the hydromagnetic convective flow of an electrically conducting power-law fluid over an exponentially stretching sheet under the effect of a strong variable magnetic field and thermal radiation. Flow formation is developed using the rheological expression of a power-law fluid.

Design/methodology/approach

The nonlinear partial differential equations describing the flow are transformed into the nonlinear ordinary differential equations by employing the local similarity transformations and then solved numerically by an effective numerical approach, namely, fourth-order Runge–Kutta integration scheme, along with the shooting iteration technique. The numerical solution is computed for different parameters by using the computational software MATLAB bvp4c. The bvp4c function uses the finite difference code as the default. This method is a fourth-order collocation method. The impacts of thermophysical parameters on velocity and temperature distributions, skin friction coefficients and Nusselt number in the boundary layer regime are exhibited through graphs and tables and deliberated with proper physical justification.

Findings

Our investigation conveys that Hall current has an enhancing behavior on velocity profiles and reduces skin friction coefficients. An increase in the power-law index is observed to deplete velocity and temperature evolution. The temperature for the pseudo-plastic (shear-thinning) fluid is relatively higher than the corresponding temperature of the dilatant (shear-thickening) fluid. The streamlines are more distorted and have low intensity near the surface of the sheet for the dilatant fluid than the pseudo-plastic fluid.

Social implications

The study is pertinent to the expulsion of polymer sheet and photographic films, hydrometallurgical industry, electrically conducting polymer dynamics, magnetic material processing, solutions and melts of polymer processing, purification of molten metals from nonmetallic. The results obtained in this work can be relevant in fluid mechanics and heat transfer applications.

Originality/value

The present problem has, to the authors' knowledge, not communicated thus far in the scientific literature. A comparative study with the published works is conducted to verify the accuracy of the present study. The results obtained in this analysis are significant in providing the standards for validating the accuracies of some numerical or empirical methods.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 May 2021

S. Das, S. Chakraborty and R. N. Jana

This study aims to expose the flow phenomena and entropy generation during a; magnetohydrodynamic (MHD) Poiseuille flow of water-based nanofluids (NFs) in a porous channel subject…

Abstract

Purpose

This study aims to expose the flow phenomena and entropy generation during a; magnetohydrodynamic (MHD) Poiseuille flow of water-based nanofluids (NFs) in a porous channel subject to hydrodynamic slip and convective heating boundary conditions. The flow caused by the uniform pressure; gradient between infinite parallel plates is considered steady and fully developed. The nanoparticles; namely, copper, alumina and titanium oxide are taken with pure water as the base fluid. Viscous dissipation and Joule heating impacts are also incorporated in this investigation.

Design/methodology/approach

The reduced governing equations are solved analytically in closed form. The physical insights of noteworthy parameters on the important flow quantities are demonstrated through graphs and analyzed elaborately. The thermodynamic analysis is performed by calculating entropy generation; rate and Bejan number. A graphical comparison between solutions corresponding to NFs and regular fluid in the channel is also provided.

Findings

The analysis of the results divulges that entropy generation minimization can be achieved by an appropriate combination of the geometrical and physical parameters of thermomechanical systems. It is reported that ascent in magnetic parameter number declines the velocity profiles, while the inverse pattern is witnessed with augmentation in hydrodynamic slip parameters. The temperature dissemination declines with the growth of Biot numbers. It is perceived that the entropy generation rate lessens with an upgrade in magnetic parameter, whereas the reverse trend of Bejan number is perceived with expansion in magnetic parameter and Biot number. The important contribution of the result is that the entropy generation rate is controlled with an appropriate composition of thermo-physical parameter values. Moreover, in the presence of a magnetic field and suction/injection at the channel walls, the shear stresses at the channel walls are reduced about two times.

Practical implications

In various industrial applications, minimizing entropy generation plays a significant role. Miniaturization of entropy is the utilization of the energy of thermal devices such as micro heat exchangers, micromixers, micropumps and cooling microelectromechanical devices.

Originality/value

An attentive review of the literature discloses that quite a few studies have been conducted on entropy generation analysis of a fully developed MHD Poiseuille flow of NFs through a permeable channel subject to the velocity slip and convective heating conditions at the walls.

Details

World Journal of Engineering, vol. 18 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 December 2020

S. Das, S. Sarkar and R.N. Jana

To amend the efficiency of engineering processes and electronic devices, it is very urgent to assess the irreversibility in the term entropy generation (EG). The efficiency of…

Abstract

Purpose

To amend the efficiency of engineering processes and electronic devices, it is very urgent to assess the irreversibility in the term entropy generation (EG). The efficiency of energy transportation in a system can be improved by minimization of the rate of EG. In this context, the aim of the present study is to estimate irreversible losses of an unsteady magnetohydrodynamic (MHD) flow of a viscous incompressible electrically conducting non-Newtonian molybdenum disulfide-polyethylene glycol Casson nanofluid past a moving vertical plate with slip condition under the influence of Hall current, thermal radiation, internal heat generation/absorption and first-order chemical reaction. Molybdenum disulfide (MoS2) nanoparticles are dispersed in the base fluid polyethylene glycol (PEG) to make Casson nanofluid. Casson fluid model is considered to characterize the rheology of the non-Newtonian fluid, whereas Rosseland approximation is adopted to simulate the thermal radiative heat flux in the energy equation.

Design/methodology/approach

The closed-form solutions are obtained for the model equations by using the Laplace transform method (LTM). Graphs and tables are prepared to examine the impact of pertinent flow parameters on the pertinent flow characteristics. The energy efficiency of the system via the Bejan number is studied extensively.

Findings

Analysis reveals that Hall current has diminishing behavior on entropy production of the thermal system. Strengthening of the magnetic field declines the velocity components and prop-ups the rate of EG. Adding nanoparticles into the base fluid reduces the EG, whereas there are an optimum volume fraction of nanoparticles for which the EG is minimized. Further, the rate of decay of EG is prominent in molybdenum disulfide-polyethylene glycol in comparison to PEG.

Practical implications

The results of this study would benefit the industrial sector in achieving the maximum heat transfer at the cost of minimum irreversibilities with an optimal choice of embedded thermophysical parameters. In view of this agenda, this study would be adjuvant in powder technology, polymer dynamics, metallurgical process, manufacturing dynamics of nano-polymers, petroleum industries, chemical industries, magnetic field control of material processing, synthesis of smart polymers, etc.

Originality/value

The novelty of this study is to encompass the analytical solution by using the LTM. Such an exact solution of non-Newtonian fluid flow is rare in the literature. Limited research articles are available in the field of EG analysis during the flow of non-Newtonian nanoliquid subject to a strong magnetic field.

Article
Publication date: 16 November 2020

S. Das, Asgar Ali and R.N. Jana

This paper aims to present the analytical investigation on an unsteady magneto-convective rotation of an electrically conducting non-Newtonian Casson hybrid nanoliquid past a…

Abstract

Purpose

This paper aims to present the analytical investigation on an unsteady magneto-convective rotation of an electrically conducting non-Newtonian Casson hybrid nanoliquid past a vertical porous plate. The effects of thermal radiation, heat source/sink and hydrodynamic slip phenomenon are also taken into account. Ethylene glycol (EG) is adopted as a base Casson fluid. The Casson fluid model is accounted for to describe the rheological characteristics of non-Newtonian fluid. EG with copper and alumina nanoparticles is envisaged as a non-Newtonian Casson hybrid nanoliquid. The copper-alumina-ethylene glycol hybrid nanoliquid is considered as the regenerative coolant.

Design/methodology/approach

The perturbation method is implemented to develop the analytical solution of the modeled equations. Acquired solutions are used to calculate the shear stresses and the rate of heat transfer in terms of amplitudes and phase angles. Numerical results are figured out and tabled to inspect the physical insights of various emerging parameters on the pertinent flow characteristics.

Findings

This exploration discloses that the velocity profiles are strongly diminished by the slip parameter. Centrifugal and Coriolis forces caused by the plate rotation are found to significantly change the entire flow regime. The supplementation of nanoparticles is to lessen the amplitude of the heat transfer rate. A comparative study is carried out to understand the improvement of heat transfer characteristics of Casson hybrid nanoliquid and Casson nanoliquid. However, the Casson hybrid nanoliquid exhibits a lower rate of heat transfer than the usual Casson nanoliquid.

Practical implications

This proposed model would be pertinent in oceanography, meteorology, atmospheric science, power engineering, power and propulsion generation, solar energy transformation, thermoelectric and sensing material processing, tumbler in polymer manufacturing, etc. Motivated by such practical implications, the proposed study has been unfolded.

Originality/value

The novelty of this paper is to examine the simultaneous effects of the magnetic field, Coriolis force, suction/injection, slip condition and thermal radiation on non-Newtonian Casson hybrid nanoliquid flow past an oscillating vertical plate subject to periodically heating in a rotating frame of reference. A numerical comparison is also made with the existing published results under some limiting cases and it is found that the results are in good agreement with them. An in-depth review of the literature and the author’s best understanding find that such aspects of the problem have so far remained unexplored.

Details

World Journal of Engineering, vol. 18 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 September 2021

S. Das, A.S. Banu and R.N. Jana

In various kinds of materials processes, heat and mass transfer control in nuclear phenomena, constructing buildings, turbines and electronic circuits, etc., there are numerous…

Abstract

Purpose

In various kinds of materials processes, heat and mass transfer control in nuclear phenomena, constructing buildings, turbines and electronic circuits, etc., there are numerous problems that cannot be enlightened by uniform wall temperature. To explore such physical phenomena researchers incorporate non-uniform or ramped temperature conditions at the boundary, the purpose of this paper is to achieve the closed-form solution of a time-dependent magnetohydrodynamic (MHD) boundary layer flow with heat and mass transfer of an electrically conducting non-Newtonian Casson fluid toward an infinite vertical plate subject to the ramped temperature and concentration (RTC). The consequences of chemical reaction in the mass equation and thermal radiation in the energy equation are encompassed in this analysis. The flow regime manifests with pertinent physical impacts of the magnetic field, thermal radiation, chemical reaction and heat generation/absorption. A first-order chemical reaction that is proportional to the concentration itself directly is assumed. The Rosseland approximation is adopted to describe the radiative heat flux in the energy equation.

Design/methodology/approach

The problem is formulated in terms of partial differential equations with the appropriate physical initial and boundary conditions. To make the governing equations dimensionless, some suitable non-dimensional variables are introduced. The resulting non-dimensional equations are solved analytically by applying the Laplace transform method. The mathematical expressions for skin friction, Nusselt number and Sherwood number are calculated and expressed in closed form. Impacts of various associated physical parameters on the pertinent flow quantities, namely, velocity, temperature and concentration profiles, skin friction, Nusselt number and Sherwood number, are demonstrated and analyzed via graphs and tables.

Findings

Graphical analysis reveals that the boundary layer flow and heat and mass transfer attributes are significantly varied for the embedded physical parameters in the case of constant temperature and concentration (CTC) as compared to RTC. It is worthy to note that the fluid velocity is high with CTC and lower for RTC. Also, the fluid velocity declines with the augmentation of the magnetic parameter. Moreover, growth in thermal radiation leads to a declination in the temperature profile.

Practical implications

The proposed model has relevance in numerous engineering and technical procedures including industries related to polymers, area of chemical productions, nuclear energy, electronics and aerodynamics. Encouraged by such applications, the present work is undertaken.

Originality/value

Literature review unveils that sundry studies have been carried out in the presence of uniform wall temperature. Few studies have been conducted by considering non-uniform or ramped wall temperature and concentration. The authors are focused on an analytical investigation of an unsteady MHD boundary layer flow with heat and mass transfer of non-Newtonian Casson fluid past a moving plate subject to the RTC at the plate. Based on the authors’ knowledge, the present study has, so far, not appeared in scientific communications. Obtained analytical solutions are verified by considering particular cases of the published works.

Details

World Journal of Engineering, vol. 18 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 May 2020

S. Das, R.R. Patra and R.N. Jana

The purpose of this study is to present the significance of Joule heating, viscous dissipation, magnetic field and slip condition on the boundary layer flow of an electrically…

Abstract

Purpose

The purpose of this study is to present the significance of Joule heating, viscous dissipation, magnetic field and slip condition on the boundary layer flow of an electrically conducting Boussinesq couple-stress fluid induced by an exponentially stretching sheet embedded in a porous medium under the effect of the magnetic field of the variable kind. The heat transfer phenomenon is accounted for under thermal radiation, Joule and viscous dissipation effects.

Design/methodology/approach

The governing nonlinear partial differential equations are transformed to the nonlinear ordinary differential equations (ODEs) by using some appropriate dimensionless variables and then the consequential nonlinear ODEs are solved numerically by making the use of the well-known shooting iteration technique along with the standard fourth-order Runge–Kutta integration scheme. The impact of emerging flow parameters on velocity and temperature profiles, streamlines, local skin friction coefficient and Nusselt number are described comprehensively through graphs and tables.

Findings

Results reveal that the velocity profile is observed to diminish considerably within the boundary layer in the presence of a magnetic field and slip condition. The enhanced radiation parameter is to decline the temperature field. The slip effect is favorable for fluid flow.

Originality/value

Till now, slip effect on Boussinesq couple-stress fluid over an exponentially stretching sheet embedded in a porous medium has not been explored. The present results are validated with the previously published study and found to be highly satisfactory.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 December 2020

S. Das, Akram Ali and R.N. Jana

In this communication, a theoretical simulation is aimed to characterize the Darcy–Forchheimer flow of a magneto-couple stress fluid over an inclined exponentially stretching…

Abstract

Purpose

In this communication, a theoretical simulation is aimed to characterize the Darcy–Forchheimer flow of a magneto-couple stress fluid over an inclined exponentially stretching sheet. Stokes’ couple stress model is deployed to simulate non-Newtonian microstructural characteristics. Two different kinds of thermal boundary conditions, namely, the prescribed exponential order surface temperature (PEST) and prescribed exponential order heat flux, are considered in the heat transfer analysis. Joule heating (Ohmic dissipation), viscous dissipation and heat source/sink impacts are also included in the energy equation because these phenomena arise frequently in magnetic materials processing.

Design/methodology/approach

The governing partial differential equations are transformed into nonlinear ordinary differential equations (ODEs) by adopting suitable similar transformations. The resulting system of nonlinear ODEs is tackled numerically by using the Runge–Kutta fourth (RK4)-order numerical integration scheme based on the shooting technique. The impacts of sundry parameters on stream function, velocity and temperature profiles are viewed with the help of graphical illustrations. For engineering interests, the physical implication of the said parameters on skin friction coefficient, Nussult number and surface temperature are discussed numerically through tables.

Findings

As a key outcome, it is noted that the augmented Chandrasekhar number, porosity parameter and Forchhemeir parameter diminish the stream function as well as the velocity profile. The behavior of the Darcian drag force is similar to the magnetic field on fluid flow. Temperature profiles are generally upsurged with the greater magnetic field, couple stress parameter and porosity parameter, and are consistently higher for the PEST case.

Practical implications

The findings obtained from this analysis can be applied in magnetic material processing, metallurgy, casting, filtration of liquid metals, gas-cleaning filtration, cooling of metallic sheets, petroleum industries, geothermal operations, boundary layer resistors in aerodynamics, etc.

Originality/value

From the literature review, it has been found that the Darcy–Forchheimer flow of a magneto-couple stress fluid over an inclined exponentially stretching surface with heat flux conditions is still scarce. The numerical data of the present results are validated with the already existing studies under limited cases and inferred to have good concord.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 August 2019

R. Ellahi, Sadiq M. Sait, N. Shehzad and Z. Ayaz

The purpose of this paper is to present the investigation of the pressure-driven flow of aluminum oxide-water based nanofluid with the combined effect of entropy generation and…

296

Abstract

Purpose

The purpose of this paper is to present the investigation of the pressure-driven flow of aluminum oxide-water based nanofluid with the combined effect of entropy generation and radiative electro-magnetohydrodynamics filled with porous media inside a symmetric wavy channel.

Design/methodology/approach

The non-linear coupled differential equations are first converted into a number of ordinary differential equations with appropriate transformations and then analytical solutions are obtained by homotopic approach. Numerical simulation has been designed by the most efficient approach known homotopic-based Mathematica package BVPh 2.0 technique. The long wavelength approximation over the channel walls is taken into account. The obtained analytical results have been validated through graphs to infer the role of most involved pertinent parameters, whereas the characteristics of heat transfer and shear stress phenomena are presented and examined numerically.

Findings

It is found that the velocity profile decreases near to the channel. This is in accordance with the physical expectation because resistive force acts opposite the direction of fluid motion, which causes a decrease in velocity. It is seen that when the electromagnetic parameter increases then the velocity close to the central walls decreases whereas quite an opposite behavior is noted near to the walls. This happens because of the combined influence of electro-magnetohydrodynamics. It is perceived that by increasing the magnetic field parameter, Darcy number, radiation parameter, electromagnetic parameter and the temperature profile increases, and this is because of thermal buoyancy effect. For radiation and electromagnetic parameters, energy loss at the lower wall has substantial impact compared to the upper wall. Residual error minimizes at 20th order iterations.

Originality/value

The proposed prospective model is designed to explore the simultaneous effects of aluminum oxide-water base nanofluid, electro-magnetohydrodynamics and entropy generation through porous media. To the best of author’s knowledge, this model is reported for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 784